Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nucleic Acids Res ; 52(D1): D1082-D1088, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37953330

RESUMEN

The UCSC Genome Browser (https://genome.ucsc.edu) is a web-based genomic visualization and analysis tool that serves data to over 7,000 distinct users per day worldwide. It provides annotation data on thousands of genome assemblies, ranging from human to SARS-CoV2. This year, we have introduced new data from the Human Pangenome Reference Consortium and on viral genomes including SARS-CoV2. We have added 1,200 new genomes to our GenArk genome system, increasing the overall diversity of our genomic representation. We have added support for nine new user-contributed track hubs to our public hub system. Additionally, we have released 29 new tracks on the human genome and 11 new tracks on the mouse genome. Collectively, these new features expand both the breadth and depth of the genomic knowledge that we share publicly with users worldwide.


Asunto(s)
Bases de Datos Genéticas , Genómica , ARN Viral , Animales , Humanos , Ratones , Genoma Humano , Genoma Viral , Internet , Anotación de Secuencia Molecular , Programas Informáticos
2.
Annu Rev Genomics Hum Genet ; 24: 347-368, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37253596

RESUMEN

Continued advances in precision medicine rely on the widespread sharing of data that relate human genetic variation to disease. However, data sharing is severely limited by legal, regulatory, and ethical restrictions that safeguard patient privacy. Federated analysis addresses this problem by transferring the code to the data-providing the technical and legal capability to analyze the data within their secure home environment rather than transferring the data to another institution for analysis. This allows researchers to gain new insights from data that cannot be moved, while respecting patient privacy and the data stewards' legal obligations. Because federated analysis is a technical solution to the legal challenges inherent in data sharing, the technology and policy implications must be evaluated together. Here, we summarize the technical approaches to federated analysis and provide a legal analysis of their policy implications.


Asunto(s)
Fenbendazol , Privacidad , Humanos , Instituciones de Salud , Difusión de la Información , Políticas
3.
Cell Genom ; 1(2)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35128509

RESUMEN

We promote a shared vision and guide for how and when to federate genomic and health-related data sharing, enabling connections and insights across independent, secure databases. The GA4GH encourages a federated approach wherein data providers have the mandate and resources to share, but where data cannot move for legal or technical reasons. We recommend a federated approach to connect national genomics initiatives into a global network and precision medicine resource.

4.
Hum Mutat ; 40(9): 1546-1556, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31294896

RESUMEN

Testing for variation in BRCA1 and BRCA2 (commonly referred to as BRCA1/2), has emerged as a standard clinical practice and is helping countless women better understand and manage their heritable risk of breast and ovarian cancer. Yet the increased rate of BRCA1/2 testing has led to an increasing number of Variants of Uncertain Significance (VUS), and the rate of VUS discovery currently outpaces the rate of clinical variant interpretation. Computational prediction is a key component of the variant interpretation pipeline. In the CAGI5 ENIGMA Challenge, six prediction teams submitted predictions on 326 newly-interpreted variants from the ENIGMA Consortium. By evaluating these predictions against the new interpretations, we have gained a number of insights on the state of the art of variant prediction and specific steps to further advance this state of the art.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/diagnóstico , Biología Computacional/métodos , Neoplasias Ováricas/diagnóstico , Neoplasias de la Mama/genética , Detección Precoz del Cáncer , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Variación Genética , Humanos , Modelos Genéticos , Neoplasias Ováricas/genética
5.
PLoS Genet ; 14(12): e1007752, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30586411

RESUMEN

The BRCA Challenge is a long-term data-sharing project initiated within the Global Alliance for Genomics and Health (GA4GH) to aggregate BRCA1 and BRCA2 data to support highly collaborative research activities. Its goal is to generate an informed and current understanding of the impact of genetic variation on cancer risk across the iconic cancer predisposition genes, BRCA1 and BRCA2. Initially, reported variants in BRCA1 and BRCA2 available from public databases were integrated into a single, newly created site, www.brcaexchange.org. The purpose of the BRCA Exchange is to provide the community with a reliable and easily accessible record of variants interpreted for a high-penetrance phenotype. More than 20,000 variants have been aggregated, three times the number found in the next-largest public database at the project's outset, of which approximately 7,250 have expert classifications. The data set is based on shared information from existing clinical databases-Breast Cancer Information Core (BIC), ClinVar, and the Leiden Open Variation Database (LOVD)-as well as population databases, all linked to a single point of access. The BRCA Challenge has brought together the existing international Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium expert panel, along with expert clinicians, diagnosticians, researchers, and database providers, all with a common goal of advancing our understanding of BRCA1 and BRCA2 variation. Ongoing work includes direct contact with national centers with access to BRCA1 and BRCA2 diagnostic data to encourage data sharing, development of methods suitable for extraction of genetic variation at the level of individual laboratory reports, and engagement with participant communities to enable a more comprehensive understanding of the clinical significance of genetic variation in BRCA1 and BRCA2.


Asunto(s)
Bases de Datos Genéticas , Genes BRCA1 , Genes BRCA2 , Variación Genética , Alelos , Neoplasias de la Mama/genética , Bases de Datos Genéticas/ética , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Difusión de la Información/ética , Difusión de la Información/legislación & jurisprudencia , Masculino , Mutación , Neoplasias Ováricas/genética , Penetrancia , Fenotipo , Factores de Riesgo
6.
JCO Precis Oncol ; 12017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28782058

RESUMEN

BACKGROUND: Genetic tests of the cancer predisposition genes BRCA1 and BRCA2 inform significant clinical decisions for both physicians and patients. Most uncovered variants are benign, and determining which few are pathogenic (disease-causing) is sometimes challenging and can potentially be inconsistent among laboratories. The ClinVar database makes de-identified clinical variant classifications from multiple laboratories publicly available for comparison and review, per recommendations of the American Medical Association (AMA), the American College of Medical Genetics (ACMG), the National Society for Genetic Counselors (NSGC), and other organizations. METHODS: Classifications of more than 2000 BRCA1/2 variants in ClinVar representing approximately 22,000 patients were dichotomized as clinically actionable or not actionable and compared across up to seven laboratories. The properties of these variants and classification differences were investigated in detail. RESULTS: Per-variant concordance was 98.5% (CI 97.9%-99.0%). All discordant variants were rare; thus, per patient concordance was estimated to be higher: 99.7%. ClinVar facilitated resolution of many of the discordant variants, and concordance increased to 99.0% per variant and 99.8% per patient when reclassified (but not yet resubmitted) variants and submission errors were addressed. Most of the remaining discordances appeared to involve either legitimate differences in expert judgment regarding particular scientific evidence, or were classifications that predated availability of important scientific evidence. CONCLUSIONS: Significant classification disagreements among the professional clinical laboratories represented in ClinVar are infrequent yet important. The unrestricted sharing of clinical genetic data allows detailed interlaboratory quality control and peer review, as exemplified by this study.

8.
Artículo en Inglés | MEDLINE | ID: mdl-25267794

RESUMEN

The Cancer Genomics Hub (CGHub) is the online repository of the sequencing programs of the National Cancer Institute (NCI), including The Cancer Genomics Atlas (TCGA), the Cancer Cell Line Encyclopedia (CCLE) and the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) projects, with data from 25 different types of cancer. The CGHub currently contains >1.4 PB of data, has grown at an average rate of 50 TB a month and serves >100 TB per week. The architecture of CGHub is designed to support bulk searching and downloading through a Web-accessible application programming interface, enforce patient genome confidentiality in data storage and transmission and optimize for efficiency in access and transfer. In this article, we describe the design of these three components, present performance results for our transfer protocol, GeneTorrent, and finally report on the growth of the system in terms of data stored and transferred, including estimated limits on the current architecture. Our experienced-based estimates suggest that centralizing storage and computational resources is more efficient than wide distribution across many satellite labs. Database URL: https://cghub.ucsc.edu.


Asunto(s)
Sistemas de Administración de Bases de Datos , Bases de Datos Genéticas , Genómica/métodos , Internet , Neoplasias/genética , Seguridad Computacional , Registros Electrónicos de Salud , Humanos
9.
Nucleic Acids Res ; 42(Database issue): D764-70, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24270787

RESUMEN

The University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a large collection of organisms, primarily vertebrates, with an emphasis on the human and mouse genomes. The Browser's web-based tools provide an integrated environment for visualizing, comparing, analysing and sharing both publicly available and user-generated genomic data sets. As of September 2013, the database contained genomic sequence and a basic set of annotation 'tracks' for ∼90 organisms. Significant new annotations include a 60-species multiple alignment conservation track on the mouse, updated UCSC Genes tracks for human and mouse, and several new sets of variation and ENCODE data. New software tools include a Variant Annotation Integrator that returns predicted functional effects of a set of variants uploaded as a custom track, an extension to UCSC Genes that displays haplotype alleles for protein-coding genes and an expansion of data hubs that includes the capability to display remotely hosted user-provided assembly sequence in addition to annotation data. To improve European access, we have added a Genome Browser mirror (http://genome-euro.ucsc.edu) hosted at Bielefeld University in Germany.


Asunto(s)
Bases de Datos Genéticas , Genoma , Genómica , Alelos , Animales , Genoma Humano , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Alineación de Secuencia , Programas Informáticos
10.
Sci Rep ; 3: 2652, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-24084870

RESUMEN

The UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu) offers interactive visualization and exploration of TCGA genomic, phenotypic, and clinical data, as produced by the Cancer Genome Atlas Research Network. Researchers can explore the impact of genomic alterations on phenotypes by visualizing gene and protein expression, copy number, DNA methylation, somatic mutation and pathway inference data alongside clinical features, Pan-Cancer subtype classifications and genomic biomarkers. Integrated Kaplan-Meier survival analysis helps investigators to assess survival stratification by any of the information.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Genómica/métodos , Neoplasias/genética , Navegador Web , Animales , Humanos , Neoplasias/metabolismo
11.
RNA ; 19(5): 627-38, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23525800

RESUMEN

Alternative splicing contributes to muscle development, but a complete set of muscle-splicing factors and their combinatorial interactions are unknown. Previous work identified ACUAA ("STAR" motif) as an enriched intron sequence near muscle-specific alternative exons such as Capzb exon 9. Mass spectrometry of myoblast proteins selected by the Capzb exon 9 intron via RNA affinity chromatography identifies Quaking (QK), a protein known to regulate mRNA function through ACUAA motifs in 3' UTRs. We find that QK promotes inclusion of Capzb exon 9 in opposition to repression by polypyrimidine tract-binding protein (PTB). QK depletion alters inclusion of 406 cassette exons whose adjacent intron sequences are also enriched in ACUAA motifs. During differentiation of myoblasts to myotubes, QK levels increase two- to threefold, suggesting a mechanism for QK-responsive exon regulation. Combined analysis of the PTB- and QK-splicing regulatory networks during myogenesis suggests that 39% of regulated exons are under the control of one or both of these splicing factors. This work provides the first evidence that QK is a global regulator of splicing during muscle development in vertebrates and shows how overlapping splicing regulatory networks contribute to gene expression programs during differentiation.


Asunto(s)
Diferenciación Celular/genética , Proteína de Unión al Tracto de Polipirimidina , Empalme del ARN/genética , Proteínas de Unión al ARN , Regiones no Traducidas 3'/genética , Sitios de Unión , Células Cultivadas , Exones , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Células HeLa , Humanos , Intrones , Células Musculares/citología , Células Musculares/metabolismo , Desarrollo de Músculos/genética , Especificidad de Órganos , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
12.
PLoS Genet ; 9(1): e1003186, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23300487

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is a common muscle disease whose molecular pathogenesis remains largely unknown. Over-expression of FSHD region gene 1 (FRG1) in mice, frogs, and worms perturbs muscle development and causes FSHD-like phenotypes. FRG1 has been implicated in splicing, and we asked how splicing might be involved in FSHD by conducting a genome-wide analysis in FRG1 mice. We find that splicing perturbations parallel the responses of different muscles to FRG1 over-expression and disease progression. Interestingly, binding sites for the Rbfox family of splicing factors are over-represented in a subset of FRG1-affected splicing events. Rbfox1 knockdown, over-expression, and RNA-IP confirm that these are direct Rbfox1 targets. We find that FRG1 is associated to the Rbfox1 RNA and decreases its stability. Consistent with this, Rbfox1 expression is down-regulated in mice and cells over-expressing FRG1 as well as in FSHD patients. Among the genes affected is Calpain 3, which is mutated in limb girdle muscular dystrophy, a disease phenotypically similar to FSHD. In FRG1 mice and FSHD patients, the Calpain 3 isoform lacking exon 6 (Capn3 E6-) is increased. Finally, Rbfox1 knockdown and over-expression of Capn3 E6- inhibit muscle differentiation. Collectively, our results suggest that a component of FSHD pathogenesis may arise by over-expression of FRG1, reducing Rbfox1 levels and leading to aberrant expression of an altered Calpain 3 protein through dysregulated splicing.


Asunto(s)
Calpaína , Proteínas Musculares , Distrofia Muscular Facioescapulohumeral , Proteínas , Proteínas de Unión al ARN/genética , Empalme Alternativo/genética , Animales , Calpaína/genética , Calpaína/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Exones , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ratones , Proteínas de Microfilamentos , Desarrollo de Músculos/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Mioblastos/citología , Mioblastos/metabolismo , Proteínas/genética , Proteínas/metabolismo , Factores de Empalme de ARN , Proteínas de Unión al ARN/metabolismo
13.
Nucleic Acids Res ; 41(Database issue): D64-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23155063

RESUMEN

The University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a wide variety of organisms. The Browser is an integrated tool set for visualizing, comparing, analysing and sharing both publicly available and user-generated genomic datasets. As of September 2012, genomic sequence and a basic set of annotation 'tracks' are provided for 63 organisms, including 26 mammals, 13 non-mammal vertebrates, 3 invertebrate deuterostomes, 13 insects, 6 worms, yeast and sea hare. In the past year 19 new genome assemblies have been added, and we anticipate releasing another 28 in early 2013. Further, a large number of annotation tracks have been either added, updated by contributors or remapped to the latest human reference genome. Among these are an updated UCSC Genes track for human and mouse assemblies. We have also introduced several features to improve usability, including new navigation menus. This article provides an update to the UCSC Genome Browser database, which has been previously featured in the Database issue of this journal.


Asunto(s)
Bases de Datos Genéticas , Genómica , Animales , Genoma Humano , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Programas Informáticos
14.
Nucleic Acids Res ; 40(Database issue): D918-23, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22086951

RESUMEN

The University of California Santa Cruz Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a wide variety of organisms. The Browser is an integrated tool set for visualizing, comparing, analyzing and sharing both publicly available and user-generated genomic data sets. In the past year, the local database has been updated with four new species assemblies, and we anticipate another four will be released by the end of 2011. Further, a large number of annotation tracks have been either added, updated by contributors, or remapped to the latest human reference genome. Among these are new phenotype and disease annotations, UCSC genes, and a major dbSNP update, which required new visualization methods. Growing beyond the local database, this year we have introduced 'track data hubs', which allow the Genome Browser to provide access to remotely located sets of annotations. This feature is designed to significantly extend the number and variety of annotation tracks that are publicly available for visualization and analysis from within our site. We have also introduced several usability features including track search and a context-sensitive menu of options available with a right-click anywhere on the Browser's image.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genoma , Animales , Enfermedad/genética , Genoma Humano , Genómica , Humanos , Internet , Anotación de Secuencia Molecular , Fenotipo
15.
Nucleic Acids Res ; 40(Database issue): D912-7, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22075998

RESUMEN

The Encyclopedia of DNA Elements (ENCODE) Consortium is entering its 5th year of production-level effort generating high-quality whole-genome functional annotations of the human genome. The past year has brought the ENCODE compendium of functional elements to critical mass, with a diverse set of 27 biochemical assays now covering 200 distinct human cell types. Within the mouse genome, which has been under study by ENCODE groups for the past 2 years, 37 cell types have been assayed. Over 2000 individual experiments have been completed and submitted to the Data Coordination Center for public use. UCSC makes this data available on the quality-reviewed public Genome Browser (http://genome.ucsc.edu) and on an early-access Preview Browser (http://genome-preview.ucsc.edu). Visual browsing, data mining and download of raw and processed data files are all supported. An ENCODE portal (http://encodeproject.org) provides specialized tools and information about the ENCODE data sets.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genoma Humano , Genoma , Ratones/genética , Animales , Humanos , Internet , Anotación de Secuencia Molecular , Programas Informáticos
16.
Bioinformatics ; 27(4): 441-8, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21159622

RESUMEN

MOTIVATION: The past decade has seen the introduction of fast and relatively inexpensive methods to detect genetic variation across the genome and exponential growth in the number of known single nucleotide variants (SNVs). There is increasing interest in bioinformatics approaches to identify variants that are functionally important from millions of candidate variants. Here, we describe the essential components of bioinformatics tools that predict functional SNVs. RESULTS: Bioinformatics tools have great potential to identify functional SNVs, but the black box nature of many tools can be a pitfall for researchers. Understanding the underlying methods, assumptions and biases of these tools is essential to their intelligent application.


Asunto(s)
Biología Computacional/métodos , Polimorfismo de Nucleótido Simple , Algoritmos , Sustitución de Aminoácidos , Inteligencia Artificial , Evolución Molecular , MicroARNs/genética , MicroARNs/metabolismo , Procesamiento Proteico-Postraduccional , Empalme del ARN , Análisis de Secuencia de Proteína , Relación Estructura-Actividad , Transcripción Genética
17.
Nucleic Acids Res ; 39(Database issue): D876-82, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20959295

RESUMEN

The University of California, Santa Cruz Genome Browser (http://genome.ucsc.edu) offers online access to a database of genomic sequence and annotation data for a wide variety of organisms. The Browser also has many tools for visualizing, comparing and analyzing both publicly available and user-generated genomic data sets, aligning sequences and uploading user data. Among the features released this year are a gene search tool and annotation track drag-reorder functionality as well as support for BAM and BigWig/BigBed file formats. New display enhancements include overlay of multiple wiggle tracks through use of transparent coloring, options for displaying transformed wiggle data, a 'mean+whiskers' windowing function for display of wiggle data at high zoom levels, and more color schemes for microarray data. New data highlights include seven new genome assemblies, a Neandertal genome data portal, phenotype and disease association data, a human RNA editing track, and a zebrafish Conservation track. We also describe updates to existing tracks.


Asunto(s)
Bases de Datos Genéticas , Genómica , Animales , Enfermedad/genética , Genes , Genoma Humano , Hominidae/genética , Humanos , Internet , Anotación de Secuencia Molecular , Fenotipo , Edición de ARN , Programas Informáticos
18.
Nucleic Acids Res ; 39(Database issue): D871-5, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21037257

RESUMEN

The ENCODE project is an international consortium with a goal of cataloguing all the functional elements in the human genome. The ENCODE Data Coordination Center (DCC) at the University of California, Santa Cruz serves as the central repository for ENCODE data. In this role, the DCC offers a collection of high-throughput, genome-wide data generated with technologies such as ChIP-Seq, RNA-Seq, DNA digestion and others. This data helps illuminate transcription factor-binding sites, histone marks, chromatin accessibility, DNA methylation, RNA expression, RNA binding and other cell-state indicators. It includes sequences with quality scores, alignments, signals calculated from the alignments, and in most cases, element or peak calls calculated from the signal data. Each data set is available for visualization and download via the UCSC Genome Browser (http://genome.ucsc.edu/). ENCODE data can also be retrieved using a metadata system that captures the experimental parameters of each assay. The ENCODE web portal at UCSC (http://encodeproject.org/) provides information about the ENCODE data and links for access.


Asunto(s)
Bases de Datos Genéticas , Genoma Humano , Regulación de la Expresión Génica , Genómica , Humanos , Internet , Programas Informáticos , Interfaz Usuario-Computador
19.
Proc Natl Acad Sci U S A ; 107(23): 10514-9, 2010 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-20498046

RESUMEN

Two major goals of regenerative medicine are to reproducibly transform adult somatic cells into a pluripotent state and to control their differentiation into specific cell fates. Progress toward these goals would be greatly helped by obtaining a complete picture of the RNA isoforms produced by these cells due to alternative splicing (AS) and alternative promoter selection (APS). To investigate the roles of AS and APS, reciprocal exon-exon junctions were interrogated on a genome-wide scale in differentiating mouse embryonic stem (ES) cells with a prototype Affymetrix microarray. Using a recently released open-source software package named AltAnalyze, we identified 144 genes for 170 putative isoform variants, the majority (67%) of which were predicted to alter protein sequence and domain composition. Verified alternative exons were largely associated with pathways of Wnt signaling and cell-cycle control, and most were conserved between mouse and human. To examine the functional impact of AS, we characterized isoforms for two genes. As predicted by AltAnalyze, we found that alternative isoforms of the gene Serca2 were targeted by distinct microRNAs (miRNA-200b, miRNA-214), suggesting a critical role for AS in cardiac development. Analysis of the Wnt transcription factor Tcf3, using selective knockdown of an ES cell-enriched and characterized isoform, revealed several distinct targets for transcriptional repression (Stmn2, Ccnd2, Atf3, Klf4, Nodal, and Jun) as well as distinct differentiation outcomes in ES cells. The findings herein illustrate a critical role for AS in the specification of ES cells with differentiation, and highlight the utility of global functional analyses of AS.


Asunto(s)
Empalme Alternativo , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Exones , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Factor 4 Similar a Kruppel , Ratones , MicroARNs/genética , Regiones Promotoras Genéticas , Selección Genética , Transducción de Señal , Transcripción Genética , Proteínas Wnt/metabolismo
20.
Nat Struct Mol Biol ; 17(2): 187-93, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20098426

RESUMEN

The common form of myotonic dystrophy (DM1) is associated with the expression of expanded CTG DNA repeats as RNA (CUG(exp) RNA). To test whether CUG(exp) RNA creates a global splicing defect, we compared the skeletal muscle of two mouse models of DM1, one expressing a CTG(exp) transgene and another homozygous for a defective muscleblind 1 (Mbnl1) gene. Strong correlation in splicing changes for approximately 100 new Mbnl1-regulated exons indicates that loss of Mbnl1 explains >80% of the splicing pathology due to CUG(exp) RNA. In contrast, only about half of mRNA-level changes can be attributed to loss of Mbnl1, indicating that CUG(exp) RNA has Mbnl1-independent effects, particularly on mRNAs for extracellular matrix proteins. We propose that CUG(exp) RNA causes two separate effects: loss of Mbnl1 function (disrupting splicing) and loss of another function that disrupts extracellular matrix mRNA regulation, possibly mediated by Mbnl2. These findings reveal unanticipated similarities between DM1 and other muscular dystrophies.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al ADN/deficiencia , Proteínas de la Matriz Extracelular/biosíntesis , Expresión Génica , Distrofia Miotónica/genética , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Modelos Animales de Enfermedad , Ratones , Modelos Biológicos , ARN Mensajero/metabolismo , Proteínas de Unión al ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...